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We present a spectral multigrid method far the reformulated Stokes
equations. Here the continuity equation is replaced by a Poisson equa-
tion for the pressure. This system is discretized by a spectral collocation
method without introducing a staggered grid. We observed no spurious
modes except the physical one which is identical to a constant. Hence
no filtering techniques are needed. We present an effective finite
difference preconditioner which is employed for relaxation inside of the
spectral multigrid method. Numerical resuits are presented which show
the efficiency of our method. @ 1993 Academic Press, Inc.

1. INTRODUCTION

We consider a reformulation of the Stokes equations
where the continuity equation is replaced by a Poisson-like
equation for the pressure. To guarantee full equivalence
between the two systems of equations {provided all func-
tions are sufficiently smooth) the continuity equation has to
hold at the boundary of the domain. This treatment has
been proposed in the famous article of Harlow and Welch
{13]. They proposed the MAC method which obtains
an equation containing Ap (p denotes the pressure) by
differentiating the time-dependent momentum equations
and adding them. For finite difference discretizations this
approach turned out to be very useful for the efficient solu-
tion with multigrid techniques (see [31, 247). Furthermore,
it is not difficult to parallelize and vectorize this algorithm.
For more information on paraliel multigrid solvers for the
Navier-Stokes equations on general 2D domains we refer
to [25].

We were interested in the performance of spectral multi-
grid methods for the reformulated Navier-Stokes equa-
tions. Here the spectral discretization is accomplished by a
pseudospectral (or cotlocation) method using Chebyshev
polynomials. The collocation points are given by the
standard Chebyshev Gauss—Lobatto nodes. In particular,

we introduce a Chebyshev collocation method which has
the following desirable properties:

+ high spectral accuracy,

» o spurious modes excepi the physical one {constant
solution),

» no staggered grids.

If the continuity equation is directly discretized by a spectral
method, the pressure is affected by spurious modes (seven
modes) which deteriorate the accuracy of the method. By
our spectral discretization of the reformulated Stokes equa-
tions spurious modes (except the constant) are avoided.
A similar approach was ailready introduced by Kleiser and
Schumann [23], where the parasite modes are implicitly
filtered out by the solution process. Quite good survey
about the occurrence of spurious modes for spectral
discretizations of the Navier-Stokes equations is given in
[1; 6, Chap. 11.3]. _

In our method the spurious pressure modes are ruled out
by enforcing a Poisson equation on the pressure rather than
the usual divergence-free condition (three spurious modes)
and the x-component of the momentum equation at the four
corners (the remaining four spurious modes). This result is
proven in Theorem 3.1. In our method the divergence-free
condition is treated implicitly. This treatment is recom-
mended for rectangular domains. For more complex
domains (already for trapezoidal domains) it cannot be
extended in a straightforward manner, Here one has to use
a domain decomposition approach, where the complex
domain is partitioned in a number of rectangular sub-
domains. An explicit treatment of the boundary equations
also works for more complex domains but preconditioning
by finite differences is quite poor. The eigenvalues of the
preconditioned spectral operator are complex and the
imaginary parts are quite large. A simple Richardson itera-
tion with fixed relaxation parameters does not converge.
Here we recommend the use of nonsymmetric matrix itera-
tions. For instance, the GMRES iteration (see [29, 30]) is
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quite a good choice. For our implicit method we use a
velocity field which is two degrees higher in the space
variable, where the Neumann boundary condition has to be
enforced. The advantage of this choice is due to the fact
that fast Fourier transforms (FFTs) are now available. This
makes the method very efficient. If the velocity field would
be of the same degree N in each variable, then the com-
plementary factor for the pressure would be ¥ -2, for
which FFT could not be used.

Furthermore, it is well known (see, eg., [2]) that
spurious modes can also be avoided by introducing
staggered grids. In [ 2] the continuity equation is discretized
by using the Gauss points instead of the Gauss—Lobatto
pomnts. However, this approach is quite expensive in
numerical computations since one has to interpolate
between these two meshes.

We also present an efficient finite difference precondi-
tioner for the spectral system. The eigenvalues of the pre-
conditioned spectral operator are complex and lic in a eircle
C which intersects the real axes in the points one and #n°/4.
These eigenvalue bounds are already well known from
similar considerations for the Poisson equation. Due to the
good performance of finite difference preconditioning
techniques we prefer a preconditioned Richardson relaxa-
tion for the iterative solution of the spectral systems.
Finaily, we show the ecfficiency of a spectral muitigrid
method which employs the standard multigrid components
(see [ 14, 15, 32, 33]).

The proposed method is one of the few existing spectral
methods of “global” type; ie., it does not reduce a
Stokes problem to a sequence of Poisson type problems
which results from the Uzawa decoupling procedure. The
decoupling in a cascade of Poisson problems was originaily
proposed by Maday, Patera, and Ronquist (see [2, 28]). In
the spectral element multigrid method of Patera and Ron-
quist the Uzawa decoupling procedure leads to an equation
for the pressure. The corresponding spectral operator is very
well conditioned and this systemn can easily be solved by a
conjugate gradient method in a few steps. In each step one
has to solve a Poisson problem. However, our treatment
avoids the explicit solution of Poisson problems. Further-
more, our technique can be extended to nonlinear problems
resulting from the Navier-Stokes equations. Here our future
research deals with finding good preconditioners for an
increasing Reynolds number.

In Section2 we pgive the reformulated Stokes and
Navier-Stokes equations. Then we present in Section 3 the
spectral discretization. Here we prove that the spectral
schemes have no spurious modes except the physical one.
Afterwards we introduce an effective finite difference pre-
conditioner (see Section 4) which is used in the relaxation
scheme of the spectral multigrid method (Section 5).
Numerical results show the usefulness of our spectral
multigrid method.

HEINRICHS

2. REFORMULATION OF THE NAVIER-
STOKES EQUATIONS

We first consider the steady Stokes equations

~dutp,=fr in @=(-L17 (@D
—Av+p, =f" in £, (2.2)
u,+v,=0 in @=[—-1,17° (2.3)

with Dirichlet boundary conditions for the velocity field:

U= uy, v="1, on Q2.
Here /' f* denote given functions defined in Q. Since the
pressure is only determined up to a constant, we impose the
average pressure to be zero, ie., {o p dx=0.

Equations (2.1), (2.2) are called the momentum equa-
tions and Eq.(2.3) is called the continuity equation. As
already mentioned in the Introduction, many difficulties in
the numerical solution of the system (2.1)-(2.3) are caused
by the special form of the continuity equation, where no
Ap occurs. There are several well-known approaches to
overcome this problem (see Roache [27, Chap. ITI-G1]).

One way to introduce Ap is described in the famous
article of Harlow and Welch [13]. They propose the MAC
method which obtains an equation containing 4p by dif-
ferentiating the time-dependent momentum equations and
adding them. Continuity on every new time level is guaran-
ted by solving this equation with an appropriate right-hand
side. Here the continuity equation has to be valid on the
boundary, too. This method has been generalized to other
time dependent problems by Hirt and Harlow [22].

In the following theorem we derive a new system which is
equivalent to (2.1)-(2.3) and which is more appropriate for
iterative solvers.

THEOREM 2.1, Let u, ve CH{Q)n CHQ), pe CHQ), f*,
f?e CY(R2). Then the Stokes system (2.1}(2.3) is equivalent
to the following modified system:

—du+p,.=f" in £2, (2.4)
—Av+p,=f" in £, (2.5)
dp=fi+f, in 2, (2.6)

u, +t,=0 on 982, 2.7)

Proof. The sum of the derivatives of Eq.(2.1) with
respect to x and (2,2) with respect to y yields (2.6). Here we
make use of the fact that due to (2.3)
in Q.

—A(u +v,)=0 (2.8)

In the other direction, Eq. (2.3} can be regained from
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Egs. (2.4)}-(2.7) because the difference of the sum of the
derivatives of Eqs. (2.4) with respect to x and (2.5) with
respect to y and Eq. (2.6) yields Eq. (2.8} and this partial
differential equation with the homogeneous Dirichlet
boundary conditions (2.7) interpreted as a boundary value
problem for #, + v, has the unique solution (2.3). |

This result can easily be generalized to the Navier-Stokes
equations. By Re we denote the Reynolds number.

THEOREM 2.2. Let u, veC*(2)nCYQ), peC*(2),
e CY(R). Then the two Navier-Stokes systems,

—Au+ Re(uu, +ou, )+ p,. = f* in Q, 29)
—dv+ Re(uv, +vv, )+ p, = f7 in2, (2.10)
u,+v,=0 inQ2 (2.11)

and
—Au+Refou, —uv, )+ p, = f* inQ, {2.12)
—Av+Re(up, —vu, )+ p, =1 in £2, (2.13)
dp+2Re(v u, —u v, )=f1+ 1 in 2, (2.14)
u,+v,=0 on 002 {2.15)

are fully equivalent.

Proof. Because of (2.11) the momentum equations
(2.9)-(2.10) can be written as (2.12)~(2.13). Differentiating
(2.12) with respect to x and (2.13) with respect to y, adding
these equations, and using the continuity equation (2.11)
yields (2.14). In the other direction, the continuity equation
can be derived from Eqgs.(2.12)-(2.15) by the same
argument as in the Stokes case. ||

For the new Stokes or Navier-Stokes systems we have
three boundary conditions for the velocity components
but no condition for the pressure. A similar problem also
occurred for the biharmonic equation

Au=f inQ,

u=u,=0 on d4,

where n denotes the outer normal derivative. In [18, 19]
we proposed a splitting inio a second-order system

do=f
Adu—v=10

in Q,

in §2,

(2.16)
(2.17)
where © denotes an auxiliary function defined in £.
Obviously, this system has two boundary conditions for

u but not one for v. In [18, 19] we describe a spectral
discretization of the system (2.16), (2.17}, which allows the
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efficient use of spectral multigrid techniques. Here we utilize
the experience made in these papers in order to derive a
suitable spectral multigrid method.

3. SPECTRAL DISCRETIZATION

In order to present the speciral discretization of the
reformulated Stokes equations (2.4)}-(2.7) we first give some
notations. For N € N we introduce the following polynomial
subspaces:

P, = {polynomials of degree less or
equal Nin x, y},
P0N+2,N= {a _xz)z (t=1pn_s :PN—z"fPN—z},
ng‘m.z ={(1=x)1 =¥’V py_2:py_26Py 1},
PG ={(1-x}1—y)py_2:py_26Py_2}.
Hence the polynomials peP%,, , fulfill p=p,=0 for
x==+1,p=0for y= 41, and the polynomials pe P}, ., ,
fulfill p=p,=0for y= +1, p=0 for x= +1. The colloca-

tion points are given by the standard Chebyshev Gauss-
Lobatto nodes:

(x;, ¥;)= (COS E, Cosj—n), Li=0,., M

N N

Furthermore, we introduce the following collocation grids:

Qy=1{(x,¥y):5,j=0,., N},

QN=Q_N."\.Q,

0Q, =0, o,

Qy={(L1} (=110, -1), (=1L -1}

Q4 ={(x p)ii=0, ., N j=1,., N—1} UQ%,

Qy={(x,y)i=1, ,N=1j=0,., N},

Q,=02,yu0%,

0825, =082y — 2%,
Now the pseudospectral (or collocation) discretization
of the reformulated Stokes system (2.4)-(2.7) associated
with homogeneous Dirichlet boundary conditions (ie.,

uo=v,=0) reads as follows: Find wuy, ,,ePy, ;
Unn+2EPY v o2 PnE Py, such that

—Auyiant Pr=1" in 2%, (3.1)
— Ay yiat P =1 in Qf, (3.2)
Apy=fi+fL @y (33)
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In (3.1)}(3.3) we choose an implicit treatment of the bound-
ary conditions. Since ¥ =v=0 on 322 we obtain from (2.7)
u, =0 along the axes x=+1 and v,=0 along the axes
y= +1, This means that we have two boundary conditions
for ¥ in x=+1 and two boundary conditions for v
in y=41. We approximate #, v by polynomials
UnonEPY 2 n Unnvy2€ PRy 4o, which have two more
degrees of freedom in the direction where two boundary
conditions have to be enforced. A similar treatment was
already successfully employed in [ 18, 19]. Since the bound-
ary conditions are treated implicitly we have to give colloca-
tion conditions on the momentum equations in » for
x= +1and v for y= = 1. Furthermore, the boundary con-
ditions u, + v, =0 in the corners are automaticaily fulfilled
if u=v=0 on 60Q2. Hence these four conditions have to be
replaced by four conditions belonging to the momentum
equations. Here we impose that (2.4} also holds in the four
corners of the domain. Since Au=0 in the four corners we
obtain the four additional conditions:

Pue=r1" in the corners.
These conditions are enclosed in Egs. (3.1) which have to be
valid in Q% The system (3.1)—(3.3) requires

M=2N—-12+(N+1)?=3N>—2N+3

conditions of coliocation for the M unknown coefficients of
Unya2n Uyneas Pu. Clearly, py is only determined up to a
constant and has to be normalized such that [, py dx =0.

A viable alternative to the above implicit scheme is given
by the following explicit method: Find u,eP%, vyeP%,
pyePy, such that

—duy+py=rf" in Q¢,, (3.4)
—Avy+ puy=1° in2y, (3.5)
Apy=fu+ft  inQy, (3.6)

Uyt Uy, =0 on 695, (3.7)

Once more for polynomials uy, vyeP9 the continuity
equation is automatically fulfilled in the four corners.
Hence we replace these conditions by the four momentum
equations.

The system (3.4)-(3.7) yields M conditions of collocation
for the M unknowns. Now there is no boundary collocation
for the momentum equations. However, a viable disadvan-
tage of this scheme is due to the fact that it does not offer
two more degrees of freedom for # in x and v in y. In the
numerical experiments it turned out to be somewhat less
accurate than the implicit scheme (see also the numerical
examples in [19]).

In the case of inhomogeneous Dirichiet boundary condi-
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tions we introduce boundary interpolants u},, v}, € P such
that
ul=u, on 0Q,,
on d382,,
on 002 .

1
Uy = g

1 1 .
Uy oy ,=0

Then one solves the spectral systems with homogencous
Dirichlet boundary conditions, where f* (resp. f*) are
replaced by f*+ dul, (resp. f*+ Av},). This treatment was
successfully applied to the driven cavity flow problem in
Section 6.

A well-known problem for spectral methods applied to
the Stokes equation results from the occurrence of certain
“spurious modes” or “parasite modes” for the pressure.
They are given by those non-trivial polynomials gyePy
which yield zero for all collocation conditions. For the
implicit scheme (3.1)-(3.3) the spurious modes are
characterized by

gun=0 in 2%,

Ay, y= 0 in 2%,

AQ'N = 0 in QN'
For the explicit scheme they are characterized by the
equations:

Gn =0 in Q%,

gy, =0 in Q,,

Agy=0 in,.

Clearly, the physical solution g =const. is one of the
spurious modes. From the analysis in [1] it followed
that for the standard Chebyshev collocation method the
spurious modes are given by the eight functions

13 TN(x)9 TN(y)s TN(x) TN(.V):
Thx)Tuly)  xTx) T(y),
Tux)yTay),  xTulx) yTu(y),

where T, denotes the Nth Chebyshev polynomial. These
were the only non-trivial solutions ¢, € P of

qN,x=0 in Q.N9

gn,=0 inQy.

Since our discretizations require additional collocation
conditions the set of spurious modes must be a subset
of the above spurious modes. Here we prove that both
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discretizations do not introduce other spurious modes than
the physical one.

THEOREM 3.1. The spectral schemes (3.1}-(3.3) and
(3.4)3.7) have no spurious modes other than the physical
one.

Proof. The proof is performed for even N. A similar
proof can be accomplished for odd N. From the above
considerations it is clear that any spurious mode ¢, can be
written as

In=45+ %
where
gy =0+ BT X)) +3Th(y)+ 6T (x) Th( ),

g =aT\(x) Tu(p) +bxT(x) Tih(y)
+eTu(x) yTi(p) +dx Tru(x) yTi(y)
anda, 8, y,48,a, b, c,deR.
Since both schemes require 4g,=0in £, and g% always

satisfies 4¢3 =0 in 2,, we finally obtain the conditions
4g5,=0inQy, ie,

Ti(x)B+ Ty + (TH(x) Taly))

+Tux)TW{y))é=0, Lj=1.,N-1
By using the relations
2 _1 i+l
Tj’:i(xi)=N ( )2 ,  i=1,.,N—-1,
1 —x;

we further derive
(—1) (1) N ( 1 + 1 )
Sin?(i/N) - sin2(e/NY | \sin(i/N) T sin?(n/N)
x(—1)*/§=0, ij=1,.,N—1.

We now consider the 3 x 3 system which results by choosing

el(39.(6 30}

A simple calculation shows that this system is regular. Its
determinant is given by 4(1 + 1/sin?(n/N)) # 0. Hence we
obtain f=y=3=0. For the remaining modes we consider
the four conditions in the corners. Here we require g rx=0
By using that

ML) =+N% THZD=IN}N?>-1),
(xTR) (£1)= £33N (N? +2)
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and introducing
G=INYN?*—1)a, b=iNYN24+2)
F=INYNi-1)e, d=IN'N+2)d

we obtain the 4 x 4 system

1 1 1 174
1 -1 1 =115

-1 -1 t 1 E"’O‘

-1 1 1= d

The determinant of this system is equal to- 16, Hence it is
regular and we obtain a=b=c=d=0. Therefore the
remaining spurious mode is identical to the constant «. This
concludes the proof. |

4. PRECONDITIONING

Since the spectral operator has a very large condition
number growing as O(N*) we present an effective finite dif-
ference (FD) preconditioner. For the Laplace operator it is
well known (see [6, 14, 15, 32, 33]} that the preconditioned
spectral operator has real, positive eigenvalues lying in the
interval [1, n*/4]. This can still be improved by using
bilinear finite element preconditioning. Here the eigenvalues
are confined to the interval [0.693, 1] (see [7, 8]). In this
paper we consider FD preconditioning.

Since the Stokes system contains first-order derivatives
we may no more expect that the eigenvalues of the precondi-
tioned spectral Stokes operator are real. But we tried to find
a FD preconditioner, where the real parts of the ecigenvalues
lic in the interval [1, n*/4] and the imaginary parts are
relatively smail. Now let us describe the FD operator more
precisely. Here we give the components in the one-dimen-
sional case. The two-dimensional components can easily be
dertved by using tensor product representation. For both
the velocity components and the pressure we approximate
the derivatives as follows {(w denotes a one-dimensional
function):

w'(x; )= awlx;_ )~ (a;+¢;) wix;)
+cjw(xj+1), j=1 ., N1
where

o [+
Cj'_-

a,=

2
$pSi— 12 8512
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and

1 . Jn . UJx1/2)n
L =SNG =sin T

251,/251

1
w'(xo} = N (w(x() - wixo)),
12

w'{xy) = F‘;/z (Wlxy_1)—wlxy));
1
w'(xg) -2—232 (w(xg) — wix;)),
12
w(xy) EZ—SE (wlxy_ 1) —wlxpy))

For the second derivative we employed standard central
differences with respect to the Chebyshev mesh. In the
boundary points we introduced outer points which were
eliminated by using the Neumann boundary conditions (for
the velocity components). The first derivatives in boundary
points are approximated by one-sided finite differences.
Now we consider the spectral system (3.1)-(3.3), where the
continuity equation is treated implicitly. The corresponding
spectral (resp. FD) operators are written as

LireRMM  (resp. L}, e RMY).

Clearly, the eigenvalues of L, L%, are complex where the
absolute value increases as Q(N?). One eigenvalue is zero
due to the presence of one spurious mode which is identical
to the constant. In order to obtain regular operators we ¢on-
sidered the operators which are obtained by eliminating the
last column and row of the system. In the following tables
we present the (absolutely) minimal and maximal eigen-
values A, and i_,, of the preconditioned operators:

A

A

=min{|4|:4 eigenvalue of (LY5,) ™' LT},

min

=max{|4|: 4 eigenvalue of (L¥7,) =" Lin}.

max

In Table I we present A, Amay for N=4, 8, 12,

The eigenvalues belonging to A, and Ap,, are real
Hence the absolute values of the eigenvalues lie in the inter-
val [1, n*/4]). In Figs. 1 and 2 we plotted the eigenvalues for

TABLE1

Amins Amax Of (L?D)_l Llsr];l

N imin )'max
4 1.00 24284
8 1.00 2.3867

12 1.00 24231
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FIG. 1. Eigenvalues of (L7} "' Li> for N=38.

N=8 and N=12. It can be seen that the imaginary parts
are relatively small, always less than 0.5, The eigenvalues
with the largest imaginary parts lie in the “middle” of the
eigenvalue spectrum with a real part of about 1.6-1.7, From
the figures it can be seen that almost all eigenvalues lie in the
circle C given by

cefiarp-4eo3)) il

Only the complex eigenvalue with smallest real part (about
0.99) is a little bit outside of C. But this will not disturb the
convergence if we choose the relaxation parameters based
on C. For a Richardson relaxation (see [14,15]), we
therefore choose the relaxation parameter w ¢qual to

2
W=7~
1+ 7?4
0.5 T T T T —
04r ° -
Q.3 ? ° o
£ 1
0.2+ ° of E
o’n :n * :
ot} S P §
R :3,,“‘“&. ' R o a0 ou , o, ° s
(X3 oo o % @ .
oF ?W-w:w%ozw:n:e:’ w0 n. uqsiuo “:mne mo:no o ocwod -‘
o N a Gy P LAEE- O °° “ﬂ . °
01 0" St -
oy ';ﬂ *
o2t ° no ® oy i
Py ®
03} O ]
H
L]
0.4 ° -
0.5 L i —_ L i L " L
[ux:] 1 1.2 14 1.6 1.3 2 2.2 2.4 2.6

FIG. 2. Eigenvalues of (L{%,)~" LI for N=12.
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L] -0.1+ . -
04| ce . 4 o
LY o ° o N
-06F : . 4 -02p C e, 1
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FIG. 3. Eigenvalues of (L§,) ' L for N=8.

Then the Richardson iteration matrix has a spectral radius
pof
/4 —1

——< 1.
/4 + 1

p=Max{jl —wl|:leC}= (4.1)

Hence we have the same spectral radius as in the case when
all eigenvalues are real. Relation (4.1) can easily be shown
by recognizing that the maximum is attained on the
boundary dC. Hence we derive for i e dC:

1—wA2= {1 —wp)?+ ¢’w?

1
(1 +7%/4)?

x|:4(1+%)p—4(p2+02):|

== +1::2/4)2 - (ZL 1)2

L5
-
1r 4
.
°
0.5t w® o |
o %o
°
F i -
L T o ° %‘; 3 v o
Op- o oot Fher b 6l Do o o .
% - °
S es
-0.5+ " ° B
S
°
.1k i
o
-1.5 . = - . A . * .
1 1.2 14 1.6 1.8 2 2z 2.4 2.6 2.8

FIG. 4. FEigenvalues of (L7;) ™" L for N=12.

FIG. 5. Eigenvalues of (LY, ) 7' LS for N=38,

Now we consider the spectrai scheme given by
(3.4)-(3.7), where the boundary coenditions are treated
explicitly. The corresponding spectral operator is called Lg5.
FD preconditioning is performed by using the same finite
difference approximations as already introduced for the
system (3.1)-(3.3). The corresponding FD operator is writ-
ten as Lgn,. In Figs. 3 and 4 we plotted the eigenvalues of the
preconditioned operator (Lg;,) ™! Liy for N=8and N =12,
It is obvious that the imaginary parts are now somewhat
larger than for the implicit scheme. They grow for increasing
real parts. The (absolutely) maximal eigenvalue has a large
imaginary part which also becomes larger for increasing N.
In particular, this eigenvalue deteriorates the convergence
of an iterative method where the relaxation parameters are
based on the interval given by the real parts. Especially, the
Richardson iteration with the above relaxation parameter
did not converge. Here one has to use some kind of nonsym-
metric matrix iterations like GMRES. For the spectral
scheme (3.4)-(3.7} we could not find an effective FD pre-

0.4 - T T s .

Q3F B

0.2+ 4

0.1f o s . @ . -

0.5 1 1t5 2 2:5 3 35
FIG. 6. Eigenvalues of (Lg}, )~ L3 for N=12.
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conditioner. Also higher order FDs could not improve the
preconditioning significantly. The problems are caused by
the continuity equation (3.7). It results in Neumann bound-
ary conditions for win x=+1 and v in y = 4+ 1 which lead
to a bad performance of preconditioning techniques. In the
FD scheme we replaced these conditions by the spectral
operators. This modified FD operator is called L, .

In Figs.5 and 6 we present the cigenspectrum of
(L.sp) " L. Now the imaginary parts of the eigenvalues
are no more large but the maximal eigenvalie becomes
larger for increasing N. However, a disadvantage of the pre-
sent approach is due to the fact that the continuity equation
is now approximated by the spectral scheme which destroys
the sparse structure of the FD scheme. Hence in order to
construct an effective iterative solver we recommend the
implicit treatment of the continuity equation.

Finally we remark that when a variational approach
is considered (like in finite elements), the Neumann
conditions can easily be incorporated. Then this type of
preconditioning is very successful (see [7, 8]).

5. SPECTRAL MULTIGRID METHOD

For a definition of the multigrid method we have to define
the relaxation scheme and the grid transfer operators (inter-
polation and restriction). These multigrid components are
used in a multigrid frame (see [3]). This means that we first
use a relaxation sweep on the finest grid. Then the resulting
residual is restricted to the next coarser grid. Here we once
more approximate the coarse grid problem by a relaxation
sweep. This procedure is continued until we arrive on the
coarsest grid. This problem is solved exactly by a direct
solver (for instance, the Gaussian elimination procedure)
or by executing a sufficient number of relaxation steps. By
means of the interpolation we afterwards correct the
approximations up to the finest grid. In the papers of Zang
et al. [32, 33] the specific spectral multigrid (SMG) com-
ponents were introduced. Brandt er a/. [4] have improved
them for problems with periodic boundary conditions.
Erlebacher er al. [9] investigated the specific problems
arising from three-dimensional (Fourier-) Helmholtz
equations. We achieved in [14, 15] some improvements
for the pseudospectral {Chebyshev-) approximation of the
Poisson equation with Dirichlet boundary conditions. The
experiences made in these investigations are now adopted to
the Stokes problem.

For the grid transfers we choose the natural interpolation
and restriction operators. The natural interpolation
represents interpolation with Chebyshev poiynomials
with respect to the Chebyshev Gauss—Lobatto nedes. Given
a function on a coarse grid, we compute the discrete
Chebyshev coefficients and then use the resulting discrete
Chebyshev series to construct the interpolated function on
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the fine grid. This may be accomplished by performing two
fast cosinus transfoerms. The restriction procedure works as
follows. Given a function on a fine grid, we compute the
discrete Chebyshev coefficients and set those coefficients
belonging to the high frequencies to zero. Afterwards we
compute the grid function on the coarse grid. If we choose
the transfer operators in this natural way they are not
adjoint to each other (see also [6, 32, 33]). For a theoretical
analysis it is sometimes better to have them adjoint to
each other. But by numerical experiments we found no
improvements in the convergence rates. Hence we still prefer
the above transfer operators.

The most important component of a multigrid method is
the relaxation scheme which is responsible for smoothing
the high frequencies in the error. Smoothing means that the
high frequency components in the error are significantly
damped such that a good representation of the error on
a coarser grid is guaranted. For SMG methods we
recommend a Richardson {or Euler) relaxation with FD
preconditioning (or defect correction}. Here we consider the
spectral scheme (3.1)-(3.3).

If some approximations dy.,veP%, 3 n Tynaz€
[’?V_N+2, PnePy (with corresponding defects H“NH,N,
d' . 7» d%) of the spectral solution are given, the calcula-
tion of the new approximation éy . » x. Uy, v + 2, P v Proceeds
as foliows:

1. Defect computation,

Ju u ~
dN+lN N+2N Uy n
Jo _ 1 L
dN.N+2 = dN.N+2 _Lsp Unwni2
ir r =
dy dy Pw

2. Defect correction. Compute an approximation

Unyan
Uy, w2

“

Pw

to the exact solution of the FD problem

- Ju
Unsow N+ N
n Jv
Lep Uy,owi2 dN,N+2 (5.1}
A jr
Pw a5

by using a line Gauss—Seidel relaxation.
3. Richardson step,

Uyiaw Uyiawn Upiow
Unnez [T Vanvsz |~ Unvsz
PN Py Pn



SPECTRAL MULTIGRID METHODS

with a suitable relaxation parameter w (see Section 4). g is
normalized such that [, f dx=0.

The evaluation of the spectral residual (step !) is the most
expensive part of the relaxation procedure. Here we show
how it can be accomplished by using fast cosinus transforms
which are based on real fast Fourier transforms (FFTs).
Since §,, € P, the evaluation of the spectral derivatives fy .,
fn.,» and Af, can be accomplished by using the standard
technique (see [147]). But it is not immediately clear how
to evaluate Aiy, o (reSp. A8y ., 2) by FFTs. Clearly,
fin.2ns On a2 can be written as

Uygon= (1 —x2)2 (1 —}’2) IV

Oy ny2= (1 _-‘72)(] - J’Z)z Pn_2s

where #,_,, Ty_,ePxn_,. In order to apply spectral
derivative operators we have to determine é,_, (resp.
fiy_,) from the function values of iy, , v (resp. Ty vy 2)
in Q,. Onec straightforward way of accomplishing this
goal is by dividing iy, ,~ (resp. Oy n..) through
(1—x?)2(1—»%) (resp. (1 —x?){1-y?)*) and then
calculating the Chebyshev representation of &, _, (resp.
O _ 2} by using the function values of these functions in €2,
However, this approach does not allow the use of FFTs and
is quite expensive. It requires a total amount of O(N?*)
arithmetic operations.

A more elegant way of determining &fy_,, 7y_, by means
of FFTs is described in the following. For simplicity, we
consider the one-dimensional case. The problem is that we
want to determine the polynomial Ww,_,eP,_, by using
the grid values wy, ,(x,), i=1, .., N—1, of the polynomial
Wyi2€ Py, given by

_ 22 -
Wy 2 =(1—=x")"Wy_,, Wy 2Py _».

It is immediately seen that

u Waaz 0
Wy = eP’,.
1—x* ¥

Hence we can calculate the coefficients of its Chebyshev
series by using FFTs. Further, we have the identity

(1=x%) Wy y =1y

Since both polynomials vanish at the endpoints, it is
enough to equate the Chebyshev coefficients of index
€ N—2 on both sides. The Chebyshev coefficients on the
left side can be expressed in terms of a three-term relation.
The corresponding tridiagonal matrix is given by E=
(ex.t)ei=1.., w1, Where
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1_%(Ck+ck—l)= k:l)
0 = —%C,‘{b k=_1+2,
k.4 _%“ k=f-—-2,
0, else
and
0, k<0,
=42, k=1,
1, k=2

This representation can for instance be taken from [11,
Appendix; or 16]. Hence, in order to determine the
Chebyshev coefficients of W, _,, we have to solve a tri-
diagonal system with E which can be accomplished in G(N)
arithmetic operations. From numerical experiments we aiso
found that this algorithm is robust with respect to roundoff
errors.

In the two-dimensional case we have to solve a system for
the matrix

—1)2 — 12
v € RN-DEN=12

EQE=(Ee; )ii-...
where ® denotes the matrix tensor product. Solving a
system with this matrix means solving a tridiagonal system
with E twice. Hence the operational account for solving a
system related to E® E requires ((N?) arithmetic opera-
tions. From these considerations it becomes clear that also
Aiipy 9y and A8, o can be evaluated by FFTs which
require a total amount of O(N? In N) arithmetic operations.

For the Richardson step (step 3) we have to define
suitable relaxation parameters. In Section 4 we already
found that for a stationary Richardson (SR) relaxation the
optimal parameter is given by w=2/(1 + n?/4)=0.5768.
The resulting smoothing rate becomes 0.4232. For the non-
stationary Richardson (NSR) relaxation the parameters
change as the Richardson step changes.

Here we recommend a sweep of three relaxations. The
convergence factor results in 0.2797. We further remark
that an adaptive parameter choice which, for instance,
results from a minimal residual relaxation does not work
since—due to the continuity equation—the symmetric part
of the preconditioned spectral operator is indefinite (see
[6,51).

The most interesting part of the relaxation procedure is
the defect correction, i.c., the iterative solution of the FD
problem (5.1). From our previous work on SMG methods
(see [14,157) it became clear that line relaxation is
necessary in order to obtain sufficient smoothing properties.
The Chebyshev grid (which is dense near the boundary)
introduces locally different anisotropies. This can only be
smoothed by a line relaxation technique. Here we propose
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an (alternating) zebra line Gauss—Seidel relaxation. Now we
describe the defect correction in more detail.

First of all we express the boundary values of p by using
function values of uy ., 4 (resp. vy x40 and py) in points
next to the boundary. Here we make use of the collocation
equations in the boundary points of Q% (resp. 2%). For this
purpose we introduce the step size

s . T
hy= l—cosﬁ=251n2ﬁ

and points x|, =cos(n/N), xy_,=cos{{¥N—1)n/N). The
collocation conditions in x = +1 are given by

(p 42,01, J’j) — Uy X, Jf’j))

P
1
+h_ (p(1, }’j) — palxy, yj))
1
=¢?“N+2VN(1,yj), =1 ., N-1,
and
2
2 (nr2n(—1,9;)— UnomXn_1 ¥i))
1

1
. (pa(—1, J’j) —palxy_1 ¥}
1

=dy_ ;=L y) j=1.,N-L

Hence we obtain by using ux 4 v(1, ¥,}=0,

- 2
pall, yj)=hlduN+2,N(17 }”j) +h_ Uy 2 X1 ,Vj)
1

+ palxs ¥ Jj=1 ., N-1,

and a similar equation for py{—1, y,).

A similar expression for p, can be derived in y= +1 by
using the collocation conditions in the boundary points of
Q5. Hence the boundary values of py in y= £ 1 can be
expressed by values of vy v, and p, in points next to the
boundary. Furthermore, by using the collocation condi-
tions in the four corners, we can determine the values of p
in the corner points. For instance, in (x, ¥)=(1,1) we
obtain

Pl 1) = pulxy, 1)+ hidiy o (1 1),

where py(x;, 1) can be expressed by values of vy v 2, Pu
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in the point {x,, x,)€2,. Hence we have eliminated all
function values in boundary points and we can write the
FD system for unknowns My _ ;. Uy v42. Pa defined in
02 ,. These are

M=9(N—1)

unknowns which are determined by the A1 conditions of
collocation in the points of £2,. Afterwards the boundary
values are updated by using the above relations in boundary
points. Now our M x M-system is approximately solved by
one or two steps of a line Gauss—Seidel relaxation. Here one
first relaxes along lines of constant x and afterwards along
lines of constant ¥. Vectorization is achieved by first solving
for the odd lines and then for the even lines, resulting in
zebra line relaxation. A more precise description is given in

[4, 14].

- Now we examine the structure of the matrices of the
Gauss-Seidel relaxation relative to a fixed line, here for
fixed y=y,. The Laplace operator introduces three non-
vanishing diagonals and p, introduces two nonvanishing
diagonals. Furthermore the cellocation conditions in points
next to the boundary relative to p, and Ap introduce values
of uy - » in points next to the boundary. Hence we finally
obtain a 3(N¥N — 1) x 3{ N — 1) system with seven nonvanish-
ing diagonals. We plotted the structure of these matrices in
Fig. 7. The non-zero entries are marked by a . Since a
Gaussian elimination procedure applied to this type of
matrix would fill up the matrix and destroy the sparse
structure we recommend a renumbering of the grid points.
If we fix je {1, .., N— 1} the above matrix is applied to the
vector

[ul,js -3 ”N—l,j: U]_ja 3 UN—].jvpl,ﬂ ] prl,j]r!
* % L
ok k * *
* x Kk * *
* kK * *
* ok * *
* Kk ok - *
* Kk * *
* ok
k% ok
* kK
L A
* kK
* Kk ok
L 4
* *  k
* ok Kk
* k x
* X K
*x K K
* Kk *
* * X

FIG. 7. Structure of submairices for Gauss—Seidel line relaxation

(N=8).
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where we write: u, ;= uy 5 v(x;, V), 0 ;=0 N, 20X, yj),
Pi ;= pn(x;, ¥;). Now we renumber the components of this
vector in the following way

H
LP1 s Vi My js Pa o V2,5 Ua gy s PN 1> Un— 1,50 Uy _1 ;1"

After a corresponding renumbering in the matrix we obtain
a modified 3(¥ —1)x3{¥ —1) matrix with seven non-
vanishing diagonals (main diagonal, first, second, and
third diagonals besides the main diagonal). For this type
of matrix the Gaussian elimination procedure can be
performed very efficiently. There is no fillup of the zero
diagonals and hence the computational amount of work for
solving these systems is proportional to N, Hernce one com-
plete sweep of the line Gauss-Seidel method requires O(N?)
arithmetic operations. For a more detailed description of
the line Gauss—Seidel relaxation we refer to [4, 14].

6. NUMERICAL RESULTS

In the numerical computations we generally use a V-cycle
with two (N =4, §), three (N =4, 8, 16), or four (N=4, §,
16, 32) grids. In order to measure the convergence speed of
the (SMG} method we calculated the spectral radius g of
the SMG operator by means of the power method. A con-
vergence factor which is related to the computational work
can be defined by p,.=p"", where W=n,+n, and n,
(resp. n,) denote the number of relaxations on each grid in
the downward (resp. upward) branches, respectively. p
does not take the total computational work into account
but it shouid be near the smoothing rate and provide an
estimate of efficiency. From numerical experiments we
found that the number of relaxations should be

ny=n,=3 for the SR and NSR relaxation
and the number of preconditioning (PC) steps should be
two. In Table II we present the spectral radius of the corre-
sponding Richardson relaxation without using multigrid
techniques. In Table TII we give the results for the SMG
method.

The numerical results substantiate the usefulness of SMG
compared to the Richardson iteration. Furthermore, it

TABLEIl

pw for the Richardson Iteration
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TABLE II1
pw for the SMG Method
Number of grids Relaxation 1 PCstep 2 PCsteps
2 SR 0.5834 0.4346
2 NSR’ 0.5286 0.4000
3 SR 0.6223 0.4641
3 NSR 0.5420 0.4269
4 SR 0.7104 0.4769
4 NSR 0.5415 0.4440

shows the improvements by choosing two PC steps of the
Gauss—Seidel line relaxation. One PC step is not enough for
a good smoothing of thic high frequencies. If we employ two
steps the convergence rates are quite similar to the rates we
already observed for the Poisson equation (see [14]).
Similar results were also obtained by other cycle structures.
For instance, the W-cycle could not improve the con-
vergence factors. The rates were nearly the same as for the
V-cycle.

Finally, we solved a driven cavity flow problem given by

f“:os f":O,
0 if y<l,
- , ) =0,
uﬂ(x!y) {{IXZ)Q lf y=1’u(}(x y)

We once more considered the spectral scheme (3.1)-(3.3).
Especially, the continuity equation u, + v, = 0 appears only
as a boundary condition in the reformuiated system. This
has the consequence that its discrete analogue does not hold
exactly but only up to some error caused by the discretiza-
tion. Hence we calculated the discrete L?-norm D2 and
maximum norm DM of z,y = (uny o v+ (0x a1 2), in 2y
We explicitly define

1 N
Dl=—x 2%(xs ¥;)
\/_A_T LEO Y ’
DM = Max{lzN(x,-, yj)‘ Hx, ) e gN}'

In Table IV we present D2, DM for N=38, 16, 32. The

results are compared to the corresponding results D2gp,

DM yp of the finite difference method [31]. We observe the
TABLE1V

Results for the Driven Cavity Flow Problem

N 1 PC step 2 PC steps N bz DM D2pp DMy

8 0.5670 0.6891 8§ 68624x10* 93903 x 103 8.1x10°2  36x10°!
16 (.8435 09172 16 33312x10-° 43427 x 107" 22x107% 12x107
32 0.9640 0.9681 32 70570%x10°7 1.3241 x 10~* 57x107%  32x107?
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high accuracy of the spectral methods. We further remark
that in any case four V-cycles are encugh to reach this
accuracy. _

We also tried to solve the corresponding Navier—Stokes
equations. But due to the occurrence of first-order
derivatives the preconditioning fails also for low Reynoids
numbers. The real parts of the cigenvalues are close to zero.
Hence also SMG methods yield bad convergence proper-
ties. In order to obtain a good preconditioner one has
to introduce a staggered grid preconditioning {see [6,
Chap. 5.2.2; 107). Then the real parts of the cigenvalues are
safely bounded greater than zero. Unfortunately, this
preconditioner is not suitable for SMG methods since it
yields a dense matrix.

Recently we had good experience with upstream pre-
conditioning, where the first derivatives are approximated
by one-sided finite differences. Here the first derivatives are
differenced according to the sign of the preceding coef-
ficients. The discretization is performed in such a way that
the resulting matrix becomes diagonally dominant. For the
iterative solution we recommend flow directed schemes. We
once more use line Gauss—Seidel relaxation for smoothing.
It is recommended to use alternate iterations of FDHI (flow
directed horizontal iterations} and FDVT (flow directed ver-
tical iterations). This iterative procedure is called FDHVI
(see [12]). Preconditioning by FDHVI introduces a spec-
trum of eigenvalues which are complex with relatively large
imaginary parts. Hence for the iterative solution we recom-
mend some nonsymmetric matrix iteration. In particular,
we recommend the GMRES iteration (see [26, 29, 30])
which belongs to the residual minimization methods. Then
also for time-dependent flows it is possible to use an implicit
treatment of the nonlinear terms. There are many important
applications, where the accuracy limitations make an
explicit treatment of the nonlinear terms sensible.

For three-dimensional flows we recommend the use of
(alternating) plane relaxation techniques. The plane relaxa-
tion requires the solution of 2D finite difference problems
which are solved approximately by using 2D multigrid
cycles. For elliptic model problems in 3D we have shown the
efficiency of this smoothing procedure in [17].
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